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Abstract

Fuzzy control methodology transforms the experts’ if-then rules into
a precise control strategy. From the logical viewpoint, an if-then rule
means implication, so it seems reasonable to use fuzzy implication in this
transformation. However, this logical approach is not what the first fuzzy
controllers used. The traditional fuzzy control approach – first proposed
by Mamdani – transforms the if-then rules into a statement that only
contains and’s and or’s, and does not use fuzzy implication at all. So, a
natural question arises: shall we use logical approach or the traditional
approach? In this paper, we analyze this question on the example of a
simple system of if-then rules. It turns out that the answer to this question
depends on what we want: if we want the smoothest possible control, we
should use logical approach, but if we want the most stable control, then
the traditional (Mamdani) approach is better.

Keywords: fuzzy control, Mamdani approach, logical approach, stable
control, smooth control

1 Formulation of the Problem

How control problems led to fuzzy logic: a brief reminder. In the early
1960s, Lotfi Zadeh, then one of the main specialists in optimal control and a co-
author of the most popular textbook on optimal control, was thinking about the
puzzling fact: that in many practical situations, supposedly optimal controllers
were performing worse than skilled human operators. A natural answer to this
puzzle was that expert human controllers possess some additional knowledge
that was not implemented in the automatic controllers.
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A seemingly natural idea is therefore to elicit this additional knowledge and
to implement it in the automatic systems. Control specialists were willing to
share this knowledge. Moreover, a large portion of this knowledge was already
available in the published form, in textbooks, manuals, papers, printed instruc-
tions, etc. However, there was a big obstacle preventing the use of this additional
knowledge: this additional knowledge was usually formulated in terms of if-then
rules involving imprecise (“fuzzy”) natural-language words like “small”. For ex-
ample, a typical rule would read: “if the temperature is slightly higher than
desired, turn on the cooling a little bit”.

Computers were originally designed to process numbers, not natural-language
words. Thus, to overcome this obstacle, it was necessary to translate this
natural-language knowledge into numerical terms, in terms understandable to
computers. This necessity was one of the main motivation for Zadeh’s invention
of fuzzy techniques.

Fuzzy techniques: main idea. To better understand the motivations be-
hind this paper, let us briefly recall – from the above viewpoint – what fuzzy
techniques are about; for details, see, e.g., [1, 2, 3, 4, 5, 7].

In fuzzy techniques, each natural-language term like “small” is described by
a function that assigns, to each possible value x of the corresponding quantity, a
degree µ(x) (from the interval [0, 1]) to which the expert agrees that this value
satisfies the corresponding property (e.g., is small). Here:

� 1 means that the property is definitely satisfied (i.e., is true),

� 0 means that the property is definitely not satisfied (i.e., if false), and

� values between 0 and 1 correspond to intermediate degrees of expert’s
confidence.

The corresponding function µ(x) is known as a membership function or, alter-
natively, a fuzzy set.

Fuzzy logic. Expert rules usually combine imprecise statements by using logi-
cal connectives like “and”, “or”, “not”, and “if-then” (“implies”). For example,
a rule may say “If the temperature is lightly higher than desired and the pressure
is slightly lower, then switch on Controller 1 or Controller 3 a little bit”.

In the usual 2-valued logic, the truth value of such logical combinations
like “A and B” is uniquely determined by the truth values of the compo-
nent statements A and B. In fuzzy techniques, in addition to the usual val-
ues “true” (1) and “false” (0), we also use intermediate degrees. It is there-
fore necessary to extend the usual logical operations from the 2-element set
{“true′′, “false′′} = {0, 1} to the whole interval [0, 1]. The interval [0, 1] with
such extended operations is what is usually described as fuzzy logic.

Zadeh himself proposed several such extensions – many of which are still
used in fuzzy systems. For example:

� one of the ways he proposed to extend “and” to the interval [0, 1] was to
use minimum f&(a, b) = min(a, b),
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� one of the ways he proposed to extend “or” to the interval [0, 1] was to
use maximum f∨(a, b) = max(a, b),

� one of the ways he proposed to extend negation to the interval [0, 1] was
to use f¬(a) = 1− a, and

� one of the ways he proposed to extend implication A → B to the interval
[0, 1] was to use f→(a, b) = max(1 − a, b), which corresponds to the fact
in the 2-valued logic, A → B is equivalent to ¬A ∨B.

Comment. Actually, the first fuzzy papers only had fizzy analogs of “and”,
“or”, and “not”. Implications came much later, and this is explainable: the
main objective of fuzzy techniques is to formally describe human reasoning. For
“and”, “or”, and “not”, traditional logical operations are in good accordance
with common sense – so it make sense to extend the corresponding traditional
logical operations from the 2-element set {0, 1} to the interval [0, 1].

In contrast, for implication, already the 2-valued mathematical definition of
this operation is far from being intuitive. Statements like “if 2 + 2 = 5 then
there are 5 witches in this room” make perfect mathematical sense, but are not
intuitive at all.

Defuzzification. As a result of applying fuzzy rules, we get, for each possi-
ble value of control u, the degree µ(u) to which this value is consistent with
these rules. However, we cannot directly use this knowledge in the resulting
automatic controller: we need to select a single control value u. This selection
transforms the fuzzy set into a single (non-fuzzy) number and is, thus, known
as defuzzification.

In data processing, one of the main criterion of how well a model fits is
the least squares approach – where we minimize the sum of the squares of the
differences. Thus, a natural – and widely used – idea is to select the value u for
which the mean square difference between the selected value u and a possible
value u is the smallest possible, and to use µ(u) as the weight with which we
take the corresponding square. In precise terms, the idea is to minimize the
integral

∫
µ(u) · (u− u)2 du. Differentiating this expression with respect to the

unknown u and equating the resulting derivative to 0, we conclude that

u =

∫
u · µ(u) du∫
µ(u) du

.

This formula is known as centroid defuzzification.

Logical and traditional approaches to fuzzy control. Suppose that we
have several fuzzy rules A1(x) → B1(u), A2(x) → B2(u), . . . , Am(x) → Bm(u),
where Ai and Bi are natural language terms. Let us denote membership func-
tions corresponding to these terms by ai(x) and bi(u).

From the purely logical viewpoint, for a given input x, a control value u is
consistent with all these rules if all these implications hold, i.e., if the following
formula holds:

(A1(x) → B1(u))& (A2(x) → B2(u))& . . . &(Am(x) → Bm(u)). (1)
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Thus, if we use fuzzy logic operations f& and f→ corresponding to & and →,
we get the following membership function for u (here, L stands for Logical):

µL(u) = f&(f→(a1(x), b1(u)), f→(a2(x), b2(u)), . . . , f→(am(x), bm(u))). (2)

Interestingly, this is not what the first fuzzy controllers used. In line with
our point about a somewhat counter-intuitive notion of implication, researchers
tried to avoid implication and reformulate the expert rules in terms that does
not include implication – only “and”, “or”, and “not”. Such a reformulation
is indeed possible if we take into account that, intuitively, a control value u is
reasonable if:

� either the first rule is applicable, i.e., x satisfies the property A1 and u
satisfies the property B1,

� or the second rule is applicable, i.e., x satisfies the property A2 and u
satisfies the property B2,

� . . .

� or the m-th rule is applicable, i.e., x satisfies the property Am and u
satisfies the property Bm.

In this interpretation, the statement that u is a reasonable control value takes
a different form:

(A1(x)&B1(u)) ∨ (A2(x)&B2(u)) ∨ . . . ∨ (Am(x)&Bm(u)). (3)

Then, if we use fuzzy logic operations f& and f∨ corresponding to & and ∨, we
get the following membership function for u (here, T stands for Traditional):

µT (u) = f∨(f&(a1(x), b1(u)), f&(a2(x), b2(u)), . . . , f&(am(x), bm(u))). (4)

This formula was first used by Mamdani and is thus known as Mamdani ap-
proach to fuzzy control.

Which approach is better? Which of the above formulas leads to a better
control? The answer may depend on what we want from control. For example,
if we are designing a controller for a car, we may want to have a control that
provides the smoothest possible ride. On the other hand, if we are controlling a
chemical plant, we may want to make that any potentially dangerous deviation
from the desired regime is corrected as soon as possible – i.e., that the control
is the most stable one.

Similarly, in medical applications, if a patient is in danger (e.g., has high very
fever), we want the most stable control: we want to make sure that the danger-
ous very-high-fever state ends as soon as possible, even when the appropriate
measures may not be very comfortable to the patient. On the other hand, if a
patient has a minor fever, we do not want to make the patient uncomfortable
by prescribing strong not-very-pleasant measure, we prefer a smoother control.
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What we do in this paper. In this paper, on a simple illustrative example,
we analyze both logical and traditional approaches to fuzzy control from the
viewpoint of smoothness and stability of the resulting control.

We want to make our arguments as convincing as possible, so we have tried
to make all the computations and discussions as simple and as clear as possible.

Comment. For the traditional Mamdani control, a similar analysis was per-
formed in [6] to see which pairs of “and” and “or”-operations lead to the
smoothest control and which pairs lead to the most stable control.

2 Simple Illustrative Example

Physical example. Let us consider – in line with one of the above examples
– simple rules for thermoregulation. Suppose that there is a knob by rotating
which we change the temperature: if we turn it to the right, the temperature
increases, and if we turn it to the left, the temperature decreases. In this
case, the input to the control is the difference x = t − t0 between the current
temperature t and the desired temperature t0, and the control value u is the
angle to which we turn the control knob.

Let us consider only small deviations, when both the difference in temper-
ature does not exceed plus minus 1 unit (e.g., 1 degree or 10 degrees), and the
angle u also does not exceed 1 unit (e.g., 1 angular degree).

Appropriate natural-language terms and the resulting fuzzy sets. In
the above case, from the commonsense viewpoint, both x and u can be either
negligible (we will denote it by N) or small positive (we will denote it by SP )
or small negative (we will denote it by SN). To numerically describe these
terms, we will use the simplest – triangular – membership functions, membership
functions that are obtained by linear interpolation from known values at which
the property is absolutely true and absolutely false.

For “negligible”, we know that 0 is absolutely negligible, and the borderline
values ±1 are absolutely not negligible. Thus, we get the following triangular
membership function n(x) = 1− |x|:
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For small positive, we know that 1 is definitely small positive, and that 0
(and all negative numbers) are absolutely not small positive. In this case, linear
interpolation leads to sp(x) = x for x > 0 and sp(x) = 0 for x ≤ 0:

-

6

�
�
�

�
�

�
�
�

�
�

1

sp(x)

−1 1
x

0

Finally, for small negative, we know that −1 is definitely small negative, and
that 0 (and all positive numbers) are absolutely not small negative. In this case,
linear interpolation leads to sn(x) = −x for x < 0 and sn(x) = 0 for x ≥ 0:
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Rules. From the commonsense viewpoint, we have the following three rules:

� if x is negligible, then u is negligible;

� if x is small positive, then u is small negative;

� if x is small negative, then u is small positive.

Comment. Which we consider our simplified example, these three rules are what
most fuzzy rules bases use for small deviations from the desired state.

What we plan to do. Let us consider the above two approached to fuzzy
control and see what these approaches lead to for small deviations x, i.e., for
deviations for which |x| ≪ 1. For both approaches, we will use the simplest fuzzy
logical operations f&(a, b) = min(a, b), f∨(a, b) = max(a, b), and f→(a, b) =
max(1− a, b).

Comment. Due to the symmetry of the problem, in both cases, it is sufficient
to consider positive values x. Indeed, one can show that for x < 0 the resulting
control u(x) will be minus the control corresponding to −x > 0: u(x) = −u(−x).

3 Case of Traditional (Mamdani) Fuzzy Control

For the traditional fuzzy control, with the above selection of simple fuzzy logic
operations, the membership function (4) takes the form

µT (u) = max(min(n(x), n(u)),min(sp(x), sn(u)),min(sn(x), sp(u))). (5)

For x > 0, due to our selection of membership functions, we have n(x) = 1− x,
sp(x) = x, and sn(x) = 0, so:

µT (u) = max(min(1− x, n(u)),min(x, sn(u)),min(0, sp(u))). (6)
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Since sp(u) ≥ 0, we get min(0, sp(u)) = 0. Here, maximum of any number v
from [0, 1] and 0 is v, so we can exclude the third min-term from (6) and get

µT (u) = max(min(1− x, n(u)),min(x, sn(u))). (7)

The graph of the minimum of two functions can be obtained by taking, for each
u, the lowest of the corresponding points from the two graphs. So, for the two
remaining min-terms, we get the following graphs:
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Thus, for the maximum of these two functions, we get:
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To estimate the resulting control value u, we need to estimate the numerator∫
u ·µT (u) and the denominator

∫
µT (u) du. Let us start with the denominator.

For small x, the function µT (u) is close to the triangular function n(u) for
which

∫
n(u) du is equal to the area of the corresponding triangle with base

1− (−1) = 2 and height 1, i.e., to 1. Thus, asymptotically,
∫
µT (u) du ∼ 1.

To estimate the numerator, let us notice that µT (u) can be represented as
the sum of the symmetric part s(u) – obtained by reflecting the right-hand side
of the graph to the left:
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and a small asymmetric part a(u) – the difference between the left-hand side
and the right-hand side:
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For the symmetric function,
∫
u · s(u) du = 0, since for every u, the terms

(−u) · s(−u) = −u · s(u) and u · s(u) cancel each other. Thus, the numerator
is equal to

∫
u · a(u) du. For small x, the function a(u) differs from 0 only for

u ≈ 1, so asymptotically,
∫
u · a(u) du ∼

∫
a(u) du. The integral

∫
a(u) du is

just an area under the triangle with base (−1 + x) − (−1) = x and height x,
i.e., x2/2. So, asymptotically,

u =

∫
u · µT (u) du∫
µT (u) du

∼ x2/2

1
=

x2

2
. (8)

4 Case of Logical Control

In the case of the logical control, the formula (2) leads to

µL(u) =

min(max(1− n(x), n(u)),max(1− sp(x), sn(u)),max(1− sn(x), sp(u))) =

min(max(x, n(u)),max(1− x, sn(u)),max(1, sp(u))). (9)

Since sp(u) ≤ 1, we get max(1, sp(u)) = 1. Here, minimum of any number v
from [0, 1] and 1 is this number v, so we can exclude the third max-term from
(9) and get

µL(u) = min(max(x, n(u)),max(1− x, sn(u))). (10)

The two remaining max-terms have the following form:
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Thus, the minimum of these two expressions has the following form:
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This function is symmetric, so
∫
u · µL(u) du = 0 and thus, u = 0.

5 Conclusions

General idea. According to the above discussion:

� the smoother control corresponds to smaller control values u, and

� the more stable control corresponding to larger control values u.

What happens here. For small x, logical control leads to u = 0, while the
traditional (Mamdani) control leads to u = x2/2 > 0. Thus, we arrive at the
following conclusion:

� if we want the smoothest control, we should use logical fuzzy control, i.e.,
control based on fuzzy implication;

� on the other hand, if we want the most stable control, then we should use
traditional (Mamdani) fuzzy control techniques.
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